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Foreword

I prepared this set of notes for a series of 5 lectures I gave at the CIMPA school “On Geometric
Flows” held at Jadavpur University in Kolkata in December 2016.

The goal is to present the Ricci flow on surfaces. The main interest of this topic is to give a
lot of the leading ideas needed to understand Ricci flow in general while keeping the technical
level not too high for beginners. The main focus of these notes will be to give a proof of the
uniformization theorem using the Ricci flow.

We will start with a short primer on the Riemannian geometry of surface, using Cartan’s
method of moving frames. This approach has been chosen because it allows to compute the
evolution of geometric quantities along the Ricci with minimal effort.

Then we will move on to Ricci flow per se, discussing examples, existence and uniqueness
and a few preliminary results.

The next chapter will briefly present the uniformization theorem, and explain why it is
enough to show convergence of the Ricci flow to a constant curvature metric to prove it.

We will then prove convergence of the Ricci flow when the genus of the underlying surface
is greater than 1. This was first done by Hamilton in 86.

The final chapter gives new tools to prove convergence for the genus 0 case, that is when
the underlying surface is the sphere. This is actually much more difficult, and a proof of
convergence of the Ricci flow which doesn’t use the uniformization theorem has been found
only quite recently. The ideas we present come from a paper by Andrews and Bryan, and
relies on isoperimetric inequalities.

References are :

• For the first chapter, one can find a similar treatment in Differential forms and applica-
tions by Do Carmo.

• For chapters 2 to 4, my main source was The Ricci flow, an introduction by Chow
an Knopff. The treatment of the Ricci flow of surfaces is located in chapter 5 of this
book. One can also have a look at Hamilton’s paper The Ricci flow on surfaces. The
interlude on the link between uniformization of Riemannian surfaces, Riemann surfaces
and algebraic curves is taken from Uniformisation des surfaces de Riemann, Retour sur
un théorème centenaire by Henri Paul de Saint-Gervais (a placeholder name for a group
of french mathematicians).

• The final chapter is based on the article Curvature Bounds By Isoperimetric Comparison
For Normalized Ricci Flow On The Two-sphere by Andrews and Bryan.

Please feel free to report inaccuracies, misspellings, confusing statements, errors at :
thomas.richard@u-pec.fr.
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1 The curvature of surfaces using
Cartan’s Method

We will briefly develop Cartan’s movig frame method for the study of the curvature of surfaces.
It allows to define the curvature in terms of the exteriror differential of differential forms, rather
than in terms of covariant derivative of vector fields.

In our context, the main interest of this approach is that the exterior derivative depends
only on the smooth structure while the covariant derivative depends on the Riemannian met-
ric. When the Riemannian metric itself is moving with repsect to a time parameter t, the
covariant derivative and the time derivative will not commute, while the exterior differential
will commute with the time derivative.

1.1 Differential forms survival kit

If X is a vector field and f a smooth function, X · f will denote the derivative of f in the
direction of X, which is equal to the smooth function df(X).

[X, Y ] will denote the Lie bracket of two vector fields.

Definition 1.1.1. A 1-form on a surface M2 is a linear map α from the space of smooth
vector fields on M2 to C∞(M) such that α(fX) = fα(X) for any f ∈ C∞(M).

Example 1.1.2. The differential df of a function is a 1-form. On R2 the 1-forms dx and dy are
the differentials of (x, y) 7→ x and (x, y) 7→ y.

Example 1.1.3. On R2 any 1-form can written as α = αx(x, y)dx + αy(x, y)dy. If V =
Vx(x, y)∂x + Vy(x, y)∂y, then α(V ) = αxVx + αyVy.

Exercise 1.1.4. Show that if f : R2 → R is smooth, then df = ∂xfdx+ ∂yfdy.

Definition 1.1.5. A 2-form on a surface M2 is an antisymmetric bilinear map η from the
space of smooth vector fields on M2 to C∞(M) such that η(fX, Y ) = fη(X, Y ) for any f ∈
C∞(M).

On a dimension 2 vector space, there is only one antisymmetric bilinear form up to scaling.
Assume one can find a nowhere vanishing 2-form η on M2 (this is equivalent to requiring M2

to be orientable), then any 2-form η̃ can be written fη for some smooth function f .
The exterior product of two 1-forms α and β is the two form given by :

(α ∧ β)(X, Y ) = α(X)β(Y )− β(X)α(Y ).

The exterior differential of a 1-form is the 2-form defined by :

dα(X, Y ) = X · (α(Y ))− Y · (α(X))− α([X, Y ]).

4



It satisfies that d(fα) = fdα+df ∧α and d(df) = 0 when f is a smooth function. Moreover,
on a simply connected domain, the condition dα = 0 is the only obstruction to the existence
of a function f such that α = df .

There is a well defined notion of integral of 2-forms on an oriented manifold, denoted by∫
M
η. To see this let us first assume that η is a compactly supported 2-form on R2. Then

η = f(x, y)dx ∧ dy for some smooth function f . We set
∫
M
η =

∫
f(x, y) dx dy. Now consider

an orientation preserving diffeomorphism ϕ = (ϕ1, ϕ2) from R2 to itself. Then :∫
R2

ϕ∗η =

∫
R2

f(ϕ1(x, y), ϕ2(x, y))dϕ1(x, y) ∧ dϕ2(x, y)

=

∫
R2

f(ϕ1(x, y), ϕ2(x, y))(∂xϕ
1dx+ ∂yϕ

1dy) ∧ (∂xϕ
2dx+ ∂yϕ

2dy)

=

∫
R2

f(ϕ1(x, y), ϕ2(x, y))(∂xϕ
1∂yϕ

2 − ∂yϕ1∂xϕ
2)dx ∧ dy

=

∫
R2

f(ϕ(x, y)) detDϕ(x, y)dx ∧ dy

=

∫
R2

f(ϕ(x, y)) detDϕ(x, y)dx dy

=

∫
R2

f(u, v) du dv

=

∫
R2

f(u, v)du ∧ dv

=

∫
R2

η

Once we avec established this diffeomorphism invariance, we can use it to define the integral
of a 2-form on a surface using a partition of unity subordinated to a finite cover by coordinate
charts.

A special case of Stokes theorem tells that :
∫
M
dα = 0 for any 1-form whenever M is

compact.

1.2 Moving frames on surfaces and the connection 1-form

Let M2 be a smooth surface and g be a smooth Riemannian metric on M2. We will also
assume that M2 is oriented and by orthonormal basis, we will mean oriented orthonormal
basis.

Proposition 1.2.1. In every coordinate patch one can build a smooth frame (E1, E2) which
is orthonormal at each point.

Proof. Let ϕ : Ω→M be a coordinate patch. By definition of a coordinate patch, the vector
fields ∂xϕ and ∂yϕ on u(Ω) are linearly independant. Set :

E1 =
∂xϕ

‖∂xϕ‖g
, E2 =

∂yϕ− g(∂yϕ,E1)E1

‖∂yϕ− g(∂yϕ,E1)E1‖g
.
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When one has a frame E1, E2, one can define a dual coframe of 1-forms (η1, η2) by requiring
that ηi(Ej) = δij at each point.

Remark 1.2.2. Important warning : An orthonormal coframe, while really convenient for
the calculations, is never unique. This means that one need to be careful when defining new
objects from the coframe that these object do not depend on the coframe.

Also a coframe is almost always only defined locally (it comes from a pair of nowhere
vanishing vector field, the “Hairy ball” theorem tells us that no such vector filed exist on S2).
So that one has to be careful when trying to prove global result using the coframe method.

Once the coframe is defined, the metric takes a quite nice form, one can write :

g = (η1)2 + (η2)2

Example 1.2.3. Let us look at the Euclidean metric in polar coordinates : dr2 + r2dθ2 to find
an orthonormal coframe, we need to write the metric as a “sum of squares”. On this example,
this is easily done :

dr2 + r2(dθ)2 = (dr)2 + (r dθ)2

so that an orthonormal coframe is (dr, r dθ).

Exercise 1.2.4. Show that for any one form α one has α = α(E1)η1 + α(E2)η2, show that for
any vector field X one has X = η1(X)E1 + η2(X)E2.

Since (E1, E2) is orthonormal, we have :

η1(X) = g(E1, X), η2(X) = g(E2, X).

Exercise 1.2.5. Show that if [E1, E2] = 0, then dη1 = dη2 = 0. From this fact, show that there
is (at least locally) a coordinate chart ϕ : Ω→M2 such that E1 = ∂xϕ, E2 = ∂yϕ and that ϕ
is a Riemannian isometry.

Just as the volume form of R2 is dx ∧ dy, the Riemannian volume form of (M2, g) is given
by :

dvg = θ1 ∧ θ2.

The fact that (E1, E2) is orthonormal allows certain simplifications in the computation of
covariant derivatives.

Proposition 1.2.6. For every tangent vector field, set ω(X) = g(DXE1, E2) then :

• ω is a one form.

• DXE1 = ω(X)E2

• DXE2 = −ω(X)E1.

Proof. The fact that X 7→ DXY is tensorial implies that ω is a 1-form.
Then since g(E1, E1) = 1 :

g(DXE1, E1) = 1
2
X · g(E1, E1) = 0.

Thus, DXE1 is proportional to E2 and :

DXE1 = g(DXE1, E2)E2 = ω(X)E2.
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The third formula follows using that :

g(DXE1, E2) + g(E1, DXE2) = X · g(E1, E2) = 0.

Definition 1.2.7. ω is called the connexion form of the frame (E1, E2).

Exercise 1.2.8. Show that

DXY = (X · η1(Y ))E1 + (X · η2(Y ))E2 + ω(X)(η1(Y )E2 − η2(Y )E1).

1.3 Cartan’s structure equations

The first structure equation shows how one can compute the exterior differential of η1 and η2

using ω.

Proposition 1.3.1. The 1-form ω is the unique 1-form which satisfies :{
dη1 = ω ∧ η2

dη2 = −ω ∧ η1.

Proof. We use the intrinsic definition of the exterior differential, together with the defining
properties of the Levi-Civita connection :

dη1(X, Y ) =X · η1(Y )− Y · η1(X)

=X · g(E1, Y )− Y · g(E1, X)− Y · g(E1, [X, Y ])

=g(DXE1, Y ) + g(E1, DXY )− g(DYE1, X)− g(E1, DXY )− g(E1, [X, Y ]).

We now use that DVE1 = ω(V )E2 and that DXY −DYX = [X, Y ] to get :

dη1(X, Y ) =ω(X)g(E2, Y )− ω(Y )g(E2, X)

=ω(X)η2(Y )− ω(Y )η2(X)

=ω ∧ η2(X, Y )

which proves the first formula, the proof of the second formula is similar.

The formula in itself is nice for calculations, but the really interesting part is that these
two equations characterize ω, this gives a way to compute ω without knowing anything about
covariant derivatives. It is actually possible to prove the existence of ω without any mention
of covariant derivatives.

Example 1.3.2. Recall that (dr, r dθ) is an orthonormal coframe for the metric dr2 + r2(dθ)2.
The first structure equation tells us that :{

d(dr) = ω ∧ (r dθ)

d(r dθ) = −ω ∧ dr

Since d(dr) = 0 and d(r dθ) = dr ∧ dθ, one can guess that ω = dθ.
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Exercise 1.3.3. Show that ω = 0 if and only there exist two function p ∈ M 7→ x(p) and
p ∈M 7→ y(p) such that p ∈M 7→ (x(p), y(p)) ∈ R2 is an isometry.

The second structure equation allows to compute the curvature from the connection form :

Proposition 1.3.4.
dω = −Kg η

1 ∧ η2

where Kg is the sectionnal (or Gaussian) curvature of (M2, g).

Proof. Since dω is a 2-form and η1∧η2 is a volume form, one can always find a function f such
that dω = f η1 ∧ η2. To prove that f = −Kg, it is enough to show that dω(E1, E2) = −Kg.
We thus compute :

dω(E1, E2) =E1 · ω(E2)− E2 · ω(E1)− ω([E1, E2])

=E1 · g(DE2E1, E2)− E2 · g(DE1E1, E2)− g(D[E1,E2]E1, E2)

=g(DE1DE2E1, E2) + g(DE2E1, DE1E2)

− g(DE2DE1E1, E2)− g(DE1E1, DE2E2)

− g(D[E1,E2]E1, E2)

Using that DXEi is orthogonal to Ei, we get that the two terms on the right are equal to 0.
The terms on the left add up to give, by definition of th Riemann curvature tensor:

dω(E1, E2) = −R(E1, E2, E1, E2) = −Kg

by definition of the sectionnal curvature.

Exercise 1.3.5. If (η1, η2) is an orthonormal coframe for the metric g, find an orthonormal
coframe for λg (λ is a constant) and use it to find the relation between the curvature of λg to
the curvature of g.

Exercise 1.3.6. Consider the metric g = dx2+dy2

y2
. Show E1 = y∂x, E2 = y∂y) is an orthonormal

frame. Build the associated coframe (η1, η2) and show that the connection form satisfies
ω = η1. Use this to show that g has constant curvature −1.

Exercise 1.3.7. Consider a metric of the form g = dr2 + f(r)2dθ2, build a simple orthonormal
frame and the associated co-frame on it, and use it to compute the connection form and the
curvature.

Exercise 1.3.8. Compute curvature of a diagonal metric g = ϕ(x, y)2dx2 + ψ(x, y)2dy2.

The formula dω = −Kgη
1 ∧ η2 suggests that

∫
M
Kgdvg should have some special proper-

ties. Actually Cartan’s second structure equation allows to give a proof of the Gauss-Bonnet
theorem :

Theorem 1.3.9. Let (M2, g) be a compact Riemannian surface, then :∫
M2

Kgdvg = 2πχ(M2).

Remark 1.3.10. χ(M2) is the Euler characteristic of the surfaceM2, it is a topological invariant.
In 2d it can be defined as 2 − 2g where g is the numer of “holes” in the surface, called the .
For instance :
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• if M2 is a sphere, then g = 0 and χ(M2) = 2.

• if M2 is a torus, then g = 1 and χ(M2) = 0.

• more generally, if M2 is a surface with g ≥ 2 holes, χ(M2) = 2− 2g ≤ −2.

In the next exercise we prove a special case.

Exercise 1.3.11. Assume M2 admits a nowhere vanishing vector field X. Show that for any
Riemannian metric g on M2 : ∫

M2

Kgdvg = 0.

The existence of a nowhere vanishing vector field is equivalent to the vanishing of the Euler
characteristic χ(M), for orientable surfaces, only the torus carries such a vector field.

Exercise 1.3.12. For a smooth function γ set :{
η̃1 = cos γ η1 − sin γ η2

η̃2 = sin γ η1 + cos γ η2

Show that (η̃1, η̃2) is an orthonormal coframe, denote by ω̃ its connexion form. Show that
ω̃ = ω + dγ.

Show that if Kg = 0, one can find α such that ω̃ = 0. Deduce from this that (M2, g) is
locally isometric to R2 if and only if Kg = 0.

1.4 The Laplacian and the Hodge star

The Laplacian on a Riemannian manifold has several equivalent definitions.

Definition 1.4.1. The Hessian of a smooth function f : M → R with respect to the metric g
is the 2-tensor Ddf .

Exercise 1.4.2. Show that Ddf(X, Y ) = Ddf(Y,X) and that Ddf(X, Y ) = g(DX∇f, Y ).

Exercise 1.4.3. Show that if X is a vector field, then Ddf(X,X) = X · (X · f)− (DXX) · f .

Definition 1.4.4. The Laplacian of f : M2 → R is the trace of the hessian :

∆gf = Ddf(E1, E1) +Ddf(E2, E2)

Exercise 1.4.5. Show that :

∆f η1 ∧ η2 = (E1 · (E1 · f) + E2 · (E2 · f)) η1 ∧ η2 − ω ∧ df.

And that if α = −(E2 · f)θ1 + (E1 · f)θ2, then dα = ∆fη1 ∧ η2.

Let ∗g denote the C∞(M) linear operator on 1-forms which sends η1 to η2 and η2 to −η1

(it is a π/2 rotation in the space of 1-forms). Then :

∗gdf = ∗g
(
(E1 · u)η1 + ·(E2 · u)η2

)
= −(E2 · f)η1 + (E1 · f)η2.

In the previous exercise we thus have proved that ∆gf η
1 ∧ η2 = d ∗ du.
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Exercise 1.4.6. Show that if g̃ = e2ug, ∗g̃ = ∗g. Deduce from this that ∆g̃f = e−2u∆gf .

Exercise 1.4.7. Use Stokes theorem to show that
∫
M

∆gudvg = 0.

Exercise 1.4.8. Show that du ∧ ∗dv = g(∇u,∇v)dvg. Deduce from this that :∫
M

(∆gu)v dvg = −
∫
M

g(∇u,∇v)dvg.

Exercise 1.4.9. Show that if f has a local minimum at p ∈M2, then ∆f(p) ≥ 0.

1.5 Time derivative of the curvature along a conformal
change.

Consider a one parameter family of Riemannian metrics g(t) on M2 such that :

∂

∂t
g = 2f g

for some smooth function f . The objective of this section is to find a nice expression for the
time derivative of Kg.

We will try to build frames and coframes adapted to the problem. Assume (E0
1 , E

0
2) is an

orthonormal frame at t = 0, then if Ėi = −fEi and Ei(0) = E0
i we have that :

˙︷ ︸︸ ︷
g(Ei, Ej) = ġ(Ei, Ej) + g(Ėi, Ej) + g(Ei, Ėj)

= 2f g(Ei, Ej)− f g(Ei, Ej)− f g(Ei, Ej) = 0.

So Ei is a (time dependent) orthonormal frame. Differentiating the relation ηi(Ej) = δij, we

get that the associated coframe evolves by η̇i = f ηi.

Exercise 1.5.1. Recall that the gradient ∇gu of a smooth function u : M2 → R satisfies
du(X) = g(∇u,X) for every vector field X. Show that ∇gu = (E1 · u)E1 + (E2 · u)E2, and
use it to compute the time derivative of ∇g(t)u.

From this we can easily get the time derivative of the volume form :

Proposition 1.5.2. If g(t) is a one parameter family of metrics such that ∂
∂t
g = 2f g, then :

∂

∂t
dvg(t) = 2f dvg(t)

Proof. We know that locally dvg(t) = η1 ∧ η2, thus :

˙︷ ︸︸ ︷
η1 ∧ η2 = η̇1 ∧ η2 + η1 ∧ η̇2 = 2f η1 ∧ η2.

Exercise 1.5.3. Show that if u : M → R is a smooth function, then :

d

dt
∆g(t)u = −2f∆g(t)u.
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We now want to take the time derivative of Cartan’s first structure equation :{
dη1 = ω ∧ η2

dη2 = −ω ∧ η1

which gives, since time derivative and exterior differential commute :{
dη̇1 = ω̇ ∧ η2 + ω ∧ η̇2

dη̇2 = −ω̇ ∧ η1 − ω ∧ η̇1

Hence, since η̇i = fηi : {
df ∧ η1 + fdη1 = ω̇ ∧ η2 + fω ∧ η2

df ∧ η2 + fdη2 = −ω̇ ∧ η1 − fω ∧ η1

The Cartan structure equation then implies :{
df ∧ η1 = ω̇ ∧ η2

df ∧ η2 = −ω̇ ∧ η1

Now writing df = (E1 · f)η1 + (E2 · f)η2 and soving for ω̇ we have :

ω̇ = −(E2 · f)η1 + (E1 · f)η2 = ∗df.

We now differentiate Cartan’s second structure equation dω = −Kgη
1 ∧ η2 to get :

dω̇ = −K̇gη
1 ∧ η2 − 2fKgη

1 ∧ η2.

All that remains to be done to find K̇g is to compute dω̇. With the aid of Cartan’s first
structure equation we get :

dω̇ =d ∗ df
=∆gf η

1 ∧ η2.

Hence we have proved that :

Proposition 1.5.4. If g(t) is a one parameter family of metrics such that ∂
∂t
g = 2f g, then :

∂

∂t
Kg(t) = −∆g(t)f − 2fKg(t).

Exercise 1.5.5. Let u be a time dependent function [0, T )×M2 → R. Show that :

∂

∂t

(
∆g(t)u) = ∆g(t)

(
∂u

∂t

)
− 2f∆g(t)u.

Exercise 1.5.6. Use the same method to prove that if g̃ = e2ug where g is a metric and u is a
smooth function, then :

ω̃ = ω − ∗du
and

e2uKg̃ = Kg −∆gu.

Deduce from this that
∫
M
Kgdvg =

∫
M
Kg̃dvg̃.
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1.6 Existence of isothermal coordinates

Isothermal coordinates are p ∈M2 7→ (x(p), y(p)) such that the metric can be written in these
coordinates as e2u(x,y)(dx2 +dy2). In a more precise way, if one considers ϕ : (x, y) 7→ p(x, y) ∈
M2 then ϕ∗g = e2u(dx2 + dy2).
ϕ is said to be conformal, the length are distorted by a factor e2u, but the measure of angle

between intersectin curves is preserved.

Theorem 1.6.1. Every point p in a riemannian surface (M2, g) has a neighborhood U such
that there exist a map : (x, y) ∈ V ⊂ R2 7→ U with ϕ∗g = e2u(dx2 + dy2).

Proof. Consider a chart U around p where a local orthonormal coframe is defined, we can
assume that U is diffeomorphic to an open disk and that Ū is homeomorphic to a closed disk.

Let v : U → R be a solution of the Poisson equation ∆gv = Kg on U (for instance with
dirichlet boundary conditions).

Set g̃ = e2ug on U . The curvature of g̃ can then be computed by the formula :

Kg̃ = e−2u(Kg −∆gv) = 0.

Thus (U, g̃) is flat. We thus can find an isometry (after reducing U if needed) :

ϕ : V ⊂ (R2, dx2 + dy2) 7→ (U, g̃).

Now ϕ∗g̃ = dx2 + dy2, so that :

ϕ∗g = ϕ∗(e−2vg̃)

= e−2(v◦ϕ)ϕ∗g̃

= e2u(dx2 + dy2)

with u = −v ◦ ϕ.
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2 Basics of surface Ricci flow

On a Riemannian surface (M2, g), the Ricci curvature can be expressed as Ricg = Kgg where
Kg is the Gauss curvature of the surface. Thus the Ricci flow which is defined in arbitrary
dimension by ∂g

∂t
= −2 Ricg(t) reduces to :

∂g

∂t
= −2Kg(t)g

The results of the previous chapter then implies that :

Proposition 2.0.2. If g(t) is a solution to the Ricci flow on a surface then :

d

dt
dvg(t) = −2Kg(t)dvg(t).

Proposition 2.0.3. If g(t) is a solution to the Ricci flow on a surface then :

d

dt
Kg(t) = ∆g(t)Kg(t) + 2K2

g(t).

2.1 First examples

Consider a surface (M2, g0) of constant curvature Kg0 = κ. Then g(t) = (1 − 2κt)g0 is a
solution to the Ricci flow. Indeed, ∂

∂t
g = −2κg0 = − 2κ

1−2κt
g(t), so all we need to show is that :

κ

1− 2κt
= Kg(t)

The relation between the curvature of two conformal metrics gives exactly this equality.
Note that the time interval on which these solutions make sense depnds on κ :

• when κ > 0, t ∈ (−∞, 1/2κ) and the solution shrinks to a point as t goes to its upper
bound.

• when κ = 0, t ∈ (−∞,+∞), and the metric does not change.

• when κ > 0, t ∈ (1/2κ,+∞) and the solution shrinks to a point as t goes to its lower
bound while as t goes to +∞, the metric expands.

This hints at how the sign of the curvature strongly affects the beahvior of the Ricci flow.
Let us also remark that although not quite constant, these solution only change by scaling.

We will see in the next section how to modify the Ricci flow equation to make constant
curvature metrics actual fixed points.

Let us consider another example, the cigar soliton. It is the one parameter family of metrics
g(t) on R2 written as :

g(t) =
dx2 + dy2

e4t + r2

13



where r2 = x2 + y2.
If we write it in polar coordinates, we get :

g(t) =
dr2 + r2dθ2

e4t + r2

When r is going to infinity, this is asymptotic to :

dr2 + r2dθ2

r2
= d(log r)2 + dθ2

which is a flat cylinder.
Let us write :

∂

∂t
g(t) = −4

e4t

e4t + r2
g(t).

So we need to show that Kg(t) = 2 e4t

e4t+r2
, the curvature formula for conformally related gives

exactly this.

Exercise 2.1.1. The computation can also be carried after writing the metric in polar coordi-
nates. Show that if r = e2t sinh(ρ), then g can be written as : dρ2 + tanh(ρ)2dθ2.

The previous exercise shows that after a time dependent change of coordinates, the metrics
are actually all isometric.This is a consequence of the fact the g(t) is a Ricci soliton.

2.2 Ricci flow versus normalized Ricci flow

The Ricci flow equation in dimension 2 is :

∂g

∂t
= −2Kg(t)g.

Let us compute the evolution of the area of (M2, g(t)) :

Proposition 2.2.1. If (M2, g(t)) is a solution to the Ricci flow, then :

d

dt
area(M2, g(t)) = −4πχ(M2)

Proof. In the previous chapter, we saw that d
dt
dvg(t) = 2f dvg(t) when d

dt
g = 2f g. Applyng

this with f = −Kg, we get :

d

dt
area(M2, g(t)) =

d

dt

∫
M

dvg(t)

=

∫
M

d

dt
dvg(t)

= −2

∫
M

Kg(t)dvg(t)

= −4πχ(M2)

where the last equality follows from Gauss-Bonnet theorem.

14



Integrating this equality we get :

area(M2, g(t)) = area(M2, g(0))− 4πχ(M)t.

Exercise 2.2.2. Assume (M2, g(t))t∈(a,b) is a Ricci flow on a compact surface M2 such that
a = −∞ (ancient solution) or b = +∞ (immortal solution). In each case, what can be said
about χ(M2) ?

The fact that the solution disappears after some time Tmax when χ(M) > 0 is a bit prob-
lematic. There are two ways of dealing with this, one can either work with the solution which
becomes singular at Tmax and rescale it properly or try to modify the PDE bby a suitable
change of variable so that this singulartime doesn’t happen. This second approach is really
effective in dimension 2.

We want to avoid the area of a solution g(t) going to 0. Set :

κg =

∫
M
Kgdvg

area(M, g(t))

And consider the equation :
∂

∂t
g = 2(κg −Kg)g.

One shows that this new flow preserves the area and that one can recover the usual Ricci flow
from it. This the normalized Ricci flow (NRF) on surfaces.

Exercise 2.2.3. Show that one can find φ(τ) and ψ(τ) such that, if (M, g(t)) is a Ricci flow
then (M,ϕ(τ)g(ψ(τ)) is a normalized Ricci flow.

The formula already tells us that the only time independent solutions are the constant
curcature metrics.

2.3 Reduction to a scalar PDE

Quick inspection of the equation for the normalised Ricci flow suggests that the angle between
two vectors doesn’t change along the flow. In other words, all the metrics g(t) are conformal
to each other and can be written g(t) = e2u(t)g0 Actually, one can write down u explicitly as
: u(t) =

∫ t
0
(κ−Kg(s))ds, which hints at the fact that curvature bounds will play a big role in

the study of convergence of the Ricci flow.

Proposition 2.3.1. g(t) is a solution to the Normalised Ricci flow if and only if g(t) = e2u(t)g0

and :
∂

∂t
u = e−2u(∆g0u−Kg0) + κ.

Proof. Differentiating u(t) =
∫ t

0
(κ − Kg(s))ds, we get that ∂

∂t
u = κ − Kg(t). Since e2uKg =

Kg0 −∆g0u, we get the identity we are looking for.

In some cases, it can be convenient to write the evolution equation for w(t) = 1
2

log u(t), so
that g(t) = w(t)g0, we get :

∂

∂t
w = ∆g0 logw + 2(κw −Kg0).

In particular, the leading term ∆g0 logw is equal to div
(

1
w
∇w
)
, we say that it is in divergence

form. This help making sense of weak solutions for instance.

15



2.4 Existence and uniqueness

The existence and uniqueness theory in arbitrary dimensions requires quite a lot af work,
mainly due to :

• The fact that the equation is geometric, and is thus invariant under coordinate changes,
which prevents it from being striclty parabolic.

• The fact that we are dealing with a system of PDE.

In the end one get the following result :

Theorem 2.4.1 (Hamilton, DeTurck). For any smooth initial metric g0 on a compact manifold
M , there exist T > 0 and a unique solution (g(t))t∈[0,T ) to the Ricci flow such that g(0) = g0

and either :

• T = +∞.

• T < +∞ and the curvature of g(t) becomes unbounded as t→ T .

Remark 2.4.2. The theorem stated above also holds for the normalized Ricci flow.

In dimension 2 however, the previous discussion has taken care of both of these issues, and
the existence and uniqueness theory can be dealt with using quite standard tools from PDE
theory. We will not give complete proofs but will try to give a rough idea of how one could
proceed.

2.4.1 Existence

We will work directly with the scalar equation for w :

∂

∂t
w = divg0

(
1

w
∇w
)

+ 2(κw −Kg0).

together with some initial condition w0 > 0.
One possible strategy is to use the linear theory of parabolic equations to recast our problem

into a fixed point problems, and then use an abstract fixed point theorem to prove existence.
The method we outline here uses the Schauder fixed point theorem, but other choices would
be possible.

The map w 7→ Φ(w) is defined, for functions w : M × [0, T ) → R such that w(0) = w0 as
the solution v to the following linear Cauchy problem :{

∂
∂t
v = divg0

(
1
w
∇v
)

+ 2(κv −Kg0)

v(0) = w0.

We have that w is a solution to our initial nonlinear problem if and only if Φ(w) = w. To
prove the existence of a fixed point we would need to :

• Find a Banach space X such that Φ maps B ⊂ X to X continuously, for B a closed
convex set. This in particular means that Φ(v) is at least as regular as v.
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• Prove that Φ(B) is relatively compact. This is usually done by proving that Φ(v) has
better regularity than v, and apply compact embeddings from functional analysis.

Both will use heavily the available estimates for linear parabolic equations of the form :

∂tf = div(a∇f) + bf + h

Where a, b h are functions on M × [0, T ). The structure of our problem hints us that these
estimates should depend as little as possible on a.

This kind of argument is implemented in Taylor’s book Partial differential equations, vol.
3 in the Holder space setting.

2.4.2 Uniqueness

Uniqueness can be asserted with simple integral methods.

Proposition 2.4.3. Assume w1 : (0, T ]×M → R and w2 : (0, T ]×M → R satisfy :
∂

∂t
w = ∆g0 logw + 2(κw −Kg0),

lim
t→0

∫
M

|w1(t)− w2(t)|dvg0 = 0.

Then w1 = w2 for all t ∈ (0, T ].

Proof. See for instance my preprint Canonical smoothing of compact Alexandrov surfaces via
Ricci flow, Proposition 3.4.

2.5 The maximum principle and its first applications.

Let us look at the evolution of the curvature for the normalized Ricci flow :

∂

∂t
Kg(t) = ∆g(t)Kg(t) + 2Kg(t)

(
Kg(t) − κ

)
This looks like a heat equation with one extra non-linear term, this type of PDE is called a

reaction diffusion equation. Similarly to the heat equation, these equation satisfy a maximum
principle property :

Theorem 2.5.1 (Maximum Principle for reaction diffusion equations). Let M2 be a compact
surface wtih a time dependent Riemannian metric g(t), F : R→ R be a smooth function and
X be a smooth (possibly time dependent) vector field on M2. Let u : [0, T ) ×M2 → R be a
smooth funtion such that :

• ∂

∂t
u ≥ ∆g(t)u+

〈
X,∇g(t)u

〉
+ F (u),

• u(0, ·) ≥ U0.

Let U : [0, T ′)→ R be such that U ′ = F (U) and U(0) = U0.
Then u(t, ·) ≥ U(t) for t ∈ [0, T ) ∩ [0, T ′).
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Proof. Fix τ = sup{t ∈ [0, T ) ∩ [0, T ′)|u(x, t) > U(t}).
Let us compute :

∂

∂t
(u− U) ≥ ∆g(t)(u− U) +

〈
X,∇(u− U)

〉
+ F (u)− F (U).

Now since F is smooth and U and u are bounded, we can find C such that |F (u)− F (U)| ≤
C|u− U |. Set H = eCt(u− U), then :

∂

∂t
H ≥ ∆g(t)H +

〈
X,∇H

〉
+ F (u)− F (U) + C(u− U) ≥ ∆g(t)H +

〈
X,∇H

〉
.

Now the usual maximum principle for supersolutions of the heat equation applies and tells us
that H ≥ 0. Let us reproduce the proof here for completeness.

We know that at t = 0, H ≥ 0. Consider Hε(t, x) = H(t, x) + ε+ tε. Note that :

∂

∂t
Hε ≥ ∆g(t)Hε+

〈
X,∇Hε

〉
+ ε.

We will prove that for any ε > 0, Hε ≥ 0. Assume this is false, then there exist a smallest
t0 > 0 such that there exist x0 with Hε(t0, x0) = 0. At this particular point, we have :

• ∂
∂t
Hε(t0, x0) ≤ 0,

• ∆g(t)Hε(t0, x0) ≥ 0,

• ∇Hε(t0, x0) = 0.

Putting these together with the parbolic equation satisfied by Hε, we get :

0 ≥ 0 + 0 + ε > 0.

A contradiction.

This tells us we will be able to control Kg(t) in terms of the solutions to the ODE y′ =
2y(y − κ). A quick inspection of this ODE shows that :

• if κ < 0, any solution with y(0) < 0 will converge exponentially fast to κ, while any
solution with y(0) > 0 will blow up in finite time.

• if κ = 0, a solution with y(0) < 0 will converge to 0 like −1/t while a solution with
y(0) > 0 will blow up in finite time.

• if κ > 0, any solution with y(0) < κ will converge exponentially fast to 0, while any
solution with y(0) > κ will blow up in finite time.

After solving the equation explicitly, we get :

Proposition 2.5.2. If g(t) is solution to the Ricci flow on a compact surface such that at
t = 0, Kg(0) ≥ K, then :

• if κ < 0 :
Kg(t) − κ ≥ (K − κ)e2κt
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• if κ = 0 :

Kg(t) ≥ −
1

2t

• if κ > 0 :
Kg(t) ≥ Ke−2κt.

This results already gives us a hint to the fact that when κ ≤ 0, the flow is quite well
behaved :

Corollary 2.5.3. If κ ≤ 0 and g(t) exists for all time t > 0, then :∫
M

|Kg(t) − κ|dvg(t)
t→+∞−−−−→ 0.

Proof. ∫
M2

|Kg(t) − κ|dvg =

∫
M2

(Kg(t) − κ) + 2(Kg(t) − κ)−dvg

=

∫
M2

2(Kg(t) − κ)−dvg

≤
∫
M2

f(t)dvg = area(M2, g(t))f(t).

where f(t) goes to zero as t goes to infinity, and is given by the previous proposition.
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3 The uniformization theorem

The goal of the following chapters si to prove the following result :

Theorem 3.0.4 (Hamilton,Chow). Let (M2, g0) be a smooth compact surface with a Rieman-
nian metric. Let g(t) be the unique Ricci flow such that g(0) = g0. Then :

• g(t) exists for all t ∈ [0,+∞).

• As t→∞, g(t) converges in every Ck norm to a smooth metric g∞.

• The metric g∞ has constant curvature 2πχ(M2)
A(M2,g0)

and is conformal to g0.

This theorem is actually strongly linked with the uniformization theorem which Riemannian
surfaces (see section 3.2), which is itself a very rich theorem with connections to many different
areas of mathematics.

The theorem below was first proved by Hamilton, and he used the uniformization theorem
to handle the χ(M2) > 0 case. This has been circumvented and now the Ricci flow is actually
able to give an independent proof of the uniformization theorem, we will present a strategy to
do this in chapter 5.

3.1 The uniformization of Riemann surfaces

The uniformization theorem deals with Riemann surfaces.

Definition 3.1.1. A Riemann surface X is a complex manifold of (complex) dimension 1, that
is a Hausdorff topological space which is covered by open sets Ui endowed with homeomorphims
ϕi : Ui → Vi, where Vi ⊂ C is open, and such that the change of charts ϕi ◦ϕ−1

j is holomorphic
wherever defined.

Examples of Riemann surfaces are numerous:

• Any open subset of C is a Riemann surface. The unit disk of C is usually denoted by D.
The fact that an entire bounded function is constant (Liouville Theorem) shows that C
and D, though homeomorphic are not equivalent as Riemann surfaces.

• S2 can be given a Riemann surface structure by considering it as the Riemann sphere
Ĉ = C ∪ {∞} where a chart round the point at infinity is given by z 7→ 1/z.

• If Λ is a lattice in C, C/Λ is a surface, homeomorphic to a 2-torus.

Riemann introduced Riemann surfaces to solve problems about algebraic curves (set of
solutions to polynomial equations P (x, y) = 0). The connection is made in the following way:
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• First, to make things more symmetric, one considers instead of

{(x, y) ∈ R2 |P (x, y) = 0}

the set
C(P̃ ) = {(X : Y : Z) ∈ CP2 | P̃ (X, Y, Z) = 0}

where P̃ is the unique homogeneous polynomial such that zdP (x
z
, y
z
) = P̃ (x, y, z) where

d is the degree of P . This amounts to add to the curve its complex points and points at
infinity. C(P̃ ) is now compact, it is called a plane projective curve.

• If one assume that C(P̃ ) is smooth, it is a (real) dimension 2 submanifold of CP2,
and since it is defined by an holomorphic equation, the holomorphic version of the
implicit function theorem will make it a Riemann surface XP̃ , this is the Riemann
surface associated with the plane projective curve C(P̃ ).

• Riemann then proves that :

– two plane projective curve C(P̃1) and C(P̃2) have biholomorphic associated Riemann
surfaces if and only if their definig polynomials satisfy :

P̃1(q(X, Y, Z), r(X, Y, Z), s(X, Y, Z)) = P̃2(X, Y, Z)

where p, q, r are homogeneous polynomials of the same degree. C(P̃1) and C(P̃2) are
said to be birationaly equivalent.

– Any compact Riemann surface is the Riemann surface associated to some plane
projective curve C(P̃ ).

So that classification of plane projective curves up to birational equivalence is reduced
to the classification of compact Riemann surfaces up to biholomorphism.

The Uniformization theorem says that there are only three simply connected Riemann
surfaces : the Remann sphere, the complex plane and the unit disk. The particular case of
compact surfaces (which is the one we will deal with) is stated a bit differently :

Theorem 3.1.2 (Uniformization of compact Riemann surfaces, Poincaré, Koebe). Let X be
a compact Riemann surface, then the universal cover of X is biholomorphic to either :

• the Riemann sphere CP1,

• the complex plane C,

• the unit disk D.

In each of the three cases, this tells us that X can be holomorphically “parametrized” (with
repetitions given by the action of the fundamental group of X on X̃ by biholomorphisms) by
one complex variable z belonging to a particularly simple domain.

Example 3.1.3. Let us consider the smooth plane projective curve P̃ (X, Y, Z) = X2+Y 2+Z2 =
0. It is a plane projective conic and after a linear coordinate change, every plane projective
conic is of this form. Consider :

z ∈ CP1 7→
(
1− z2 : 2z : i(1 + z2)

)
∈ CP2

One can show that it is a biholomorphism from CP1 to C(P̃ ).
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The Uniformization theorem grew out of a generalization of the situation above to all plane
projective curves, but at a great cost :

• apart from CP1, the domain can also be C or D.

• the parametrization we get is only a local biholomorphism.

• the parametrization is not by polynomials anymore, but by holomorphic functions. Al-
ready to explicitly handle degree three curves, one need to introduce elliptic functions,
and the case of arbitrary degree will require Fuchsian functions.

3.2 From Riemann surfaces to surfaces with a Riemannian
metric

The Riemannian version of the Uniformization theorem for compact surfaces is usually stated
in this way :

Theorem 3.2.1. Let (M2, g) be a compact surface with a Riemannian metric, then one can
find a smooth function u : M2 → R such that (M2, e2ug) has constant curvature.

To make the link with Uniformization of Riemann surfaces, we first remark that each of the
Riemann surfaces CP1, C and D carry complete metrics of constant curvature :

• On C the euclidean metric dx2 + dy2 = |dz|2 has curvature 0.

• On D, the poincaré metric
|dz|2

(1− |z|2)2
has curvature −1.

• The Riemann sphere, with the metric
|dz|2

(1 + |z|2)2
has constant curvature 1. (This the

image of the standard metric on S2 by stereographic projection.)

Moreover :

• those three models are (up to scaling) the only simply connected surfaces of constant
curvature.

• any isometry of these models is actually a biholomorphism of the underlying Riemann
surface.

Now let us consider a compact Riemann surface X. A Riemannian metric g on X is said to
be compatible with the complex structure if for any holomorphic chart ϕ : U ⊂ C→ V ⊂ X,
ϕ∗g = e2u|dz|2.

Read in charts, any local isometry between Riemann surfaces equipped with metrics co
To prove the Riemann surface Uniformization from the Riemannian Uniformization, one

proceeds as follows :

• Using a partition of unity on X relative to holomorphic coordinate charts, build on X a
Riemannian metric g compatible with the complex structure.
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• Then consider g̃ = e2ug with constant curvature (whose existence is given by Riemannian
uniformization).

• On the universal cover X̄ → X, the pullback of g̃ will be a complete constant curvature
metric, compatible with the Riemann surface structure of X̄. With this metric X̄ will
then be isometric to either the euclidean plane, the hyperbolic plane or the round sphere,
and thus biholomorphic to either C, D or CP1.
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4 Convergence when χ(M) ≤ 0.

We have seen how to get a good lower bound on the curvature when κ ≤ 0, we will now prove
an upper bound which will imply convergence.

4.1 The potential of the curvature

The function Kg(t) − κ satifies : ∫
M2

(Kg(t) − κ)dvg(t) = 0.

So on a compact surface, we can solve the equation :

∆g(t)f = Kg(t) − κ

moreover the solution is unique up to the addition of a suitable constant.
Now set f(t, x) to be a potential of the curvature, and assume it is smooth in both variables

t and x. Now differentiate the relation ∆g(t)f = Kg(t) − κ with repect to time :

∆g(t)

(
∂f

∂t

)
+ 2(Kg(t) − κ)∆g(t)f = ∆g(t)Kg(t) + 2Kg(t)(Kg(t) − κ)

Using that ∆g(t)f = Kg(t) − κ, we get :

∆g(t)

(
∂f

∂t

)
+ 2Kg(t)(Kg(t) − κ)− 2κ∆g(t)f = ∆g(t)Kg(t) + 2Kg(t)(Kg(t) − κ)

Finally, since ∆g(t)Kg(t) = ∆g(t)∆g(t)f :

∆g(t)

(
∂f

∂t
−∆g(t)f − 2κf

)
= 0.

Using this computation, we can show :

Proposition 4.1.1. Let f : [0, T )×M2 → R be such that

• f0 = f(0, ·) satisfies ∆g(0)f = Kg(0) − κ.

• ∂f
∂t

= ∆g(t)f + 2κf .

Then for every t > 0, ∆g(t)f(t, ·) = Kg(t) − κ

We will now take f as in the proposition.
Considering the evolution equation for f , the maximum principle implies that there exists

C such that |f(t, x)| ≤ Ceκt, where C = supx∈M |f0(x)|.
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4.2 Using the potential to get upper bounds on the
curvature.

Set H = Kg(t) − κ+ 2|∇f |2. This expression may seem arbitrary, but it has nice link to Ricci
solitons which is explained in Chow and Knopff book, chapter 5 section 3.
H satisfies a useful evolution equation :

Proposition 4.2.1.
∂

∂t
H ≤ ∆g(t)H + 2κH

Proof. We use two results to make this computation :

• The fact that along a solution to the Normalized Ricci flow :

∂

∂t
|∇gf |2g = 2g

(
∇g ∂f

∂t
,∇gf

)
+ 2(Kg − κ)|∇gf |2g

which can be proved by differentiating the identity df ∧∗df = |∇gf |2gdvg with respect to
time.

• The Bochner formula :

1
2
∆|∇f |2 = g(∇∆f,∇f) + |Hess f |2 + Ric(∇f,∇f)

together with the fact that Ricg = Kgg in dimension 2. The Bochner formula could be
proved using the calculus we have developped but is easier to prove using the Levi-Civitta
connection formalism.

We first compute :(
∂

∂t
−∆g(t)

)
(Kg(t) − κ) = 2Kg(t)(Kg(t) − κ) = 2

(
∆g(t)f

)2
+ 2κ(Kg(t) − κ).

And : (
∂

∂t
−∆g(t)

)
|∇f |2 = 2(Kg(t) − κ)|∇f |2 + 2g

(
∇ ∂

∂t
f,∇f

)
− 2

(
g(∇∆f,∇f) + |Hess f |2 +Kg(t)|∇f |2

)
= − 2κ|∇f |2 + 2g (∇∆f + 2κ∇f,∇f)

− 2
(
g(∇∆f,∇f) + |Hess f |2

)
= 2κ|∇f |2 − 2|Hess f |2.

Hence : (
∂

∂t
−∆g(t)

)
H = 2κH + 2

(
(∆g(t)f)2 − 2|Hess f |2

)
.

Now ∆g(t)f is the trace of the Hessian, if we denote by λ1 and λ2 the eigenvalues of the Hessian,
we get :

(∆g(t)f)2 − 2|Hess f |2 = (λ1 + λ2)2 − 2(λ2
1 + λ2

2) = −(λ1 − λ2)2 ≤ 0.

25



Corollary 4.2.2. For any solution of the normalized Ricci flow (M2, g(t)), there exist C > 0,
depending only on g(0), such that :

Kg(t) − κ ≤ Ce2κt

Proof. We can apply the maximum principle to H to get that :

H(t, x) ≤
(
sup
x∈M

H(0, x)
)
e2κt.

Since Kg(t) − κ ≤ H, we have Kg(t) − κ ≤ Ce2κt.

This allows us to show long time existence of the normalized Ricci flow.

Corollary 4.2.3. Let (M2, g0) be a Riemannian surface, then the solution g(t) to the nor-
malized Ricci flow exists for t ∈ [0,+∞).

Proof. Independently of the sign of κ, the last proposition together with the estimate from
the end of chapter 2 will imply that there exist a continuous function C : [0,+∞) → R such
that :

|Kg(t)| ≤ C(t)

for any solution g(t) to the normalized Ricci flow starting at g0 This tells us that the curvature
cannot become unbounded in finite time, the discussion in section 2.4 implies that g(t) can be
extended for all t < +∞.

4.3 Exponential convergence when χ(M) < 0.

So far we have the foloowing estimate when κ < 0 :

|Kg(t) − κ| ≤ Ceκt.

Theorem 4.3.1. Let (M2, g0) be a surface with χ(M2) < 0, and (g(t))t∈[0,+∞) be the Ricci
flow such that g(0) = g0. Then :

g(t)
t→∞−−−→ g∞

and g∞ is a smooth metric with constant curvature κ, conformal to g0. Moreover, the conver-
gence is exponential in every Cm norm.

We will prove the C0 convergence part of the theroem in full details, the proof of Cm

convergence requires some more estimates and will be only sketched.

C0-convergence. Let V be a vector (time independent), then :

∂

∂t

(
g(t)(V, V )

)
= −2(Kg(t) − κ)g(t)(V, V )

So :

log

(
g(t)(V, V )

g(0)(V, V )

)
= −2

∫ t

0

(Kg(s) − κ)ds

By our estimate |Kg(t) − κ| < Ceκt, so the function in the integral is integrable, and this is
uniform in x, so we get uniform convergence of the metric.
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The convergence of derivatives of g relies on the following estimate :

Lemma 4.3.2. Let (M2, g(t)) be a Ricci flow on a surface with χ(M2) < 0. Then for every
m ∈ N there exists Cm > 0 such that :

|DmKg(t)|2 ≤ Cme
κt.

Remark 4.3.3. DmK denotes the m-th covariant derivative of the curvature.

m=1. We only prove the m = 1 case, the other ones take the same overall approach with
slightly more involved computations.(
∂

∂t
−∆g(t)

)
|∇Kg|2 = 2(Kg(t) − κ)|∇Kg(t)|2 + 2g

(
∇ ∂

∂t
Kg(t),∇Kg(t)

)
− 2

(
g(∇∆Kg(t),∇Kg(t)) + |HessKg(t)|2 +Kg(t)|∇Kg(t)|2

)
= 2(Kg(t) − κ)|∇Kg(t)|2 + 2g

(
∇
(

∆Kg(t) + 2Kg(t)(Kg(t) − κ)
)
,∇Kg(t)

)
− 2

(
g(∇∆Kg(t),∇Kg(t)) + |HessKg(t)|2 +Kg(t)|∇Kg(t)|2

)
= − 2κ|∇Kg(t)|2 + 4g

(
∇
(
Kg(t)(Kg(t) − κ)

)
,∇Kg(t)

)
− 2|HessKg(t)|2

≤ (8Kg(t) − 6κ)|∇Kg(t)|2.

Since Kg(t) uniformly converges to κ < 0, for t > T big enough, (8Kg(t) − 6κ) ≤ κ. Hence, we
can apply the maximum principle on [T,+∞) to get that there exist C such that :

∀t ≥ T, |∇Kg(t)|2 ≤ Ceκt.

Rescaling C if needed, we can ensure that the estimate holds for all t ≥ 0.

Sketch, Cm convergence, constant curvature. With the bounds from the lemma, we have that
DmKg(t) goes to zero exponentially fast, this allows to show that the convergence occurs in
Cm norms, and that we can make precise the following limit :

Kg∞ = lim
t→∞

Kg(t) = κ.

4.4 Adaptation in the χ(M) = 0 case

We won’t give any details here, please see Chow and Knopff book, section 6 of chapter 5. In a
similar way to the case when χ(M2) < 0, the maximum principle can then be uesd to prove :

Proposition 4.4.1. For every normalized Ricci flow (M2, g(t)) on M2 such that χ(M2) = 0,
for every m ∈ N there exists Cm > 0 such that for every t > 0 :

sup
x∈M2

|DmKg(t)|2 ≤
Cm
tm+2

.
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Using Sobolev embeddings for instance1, this will imply that for any n ∈ N and any m ∈ N
:

sup
x∈M2

|DmKg(t)| = o(t−m)

when t→∞. Once one has these bounds, one can argue as in the case χ(M2) < 0.

1this is actually quite subtle, see for instance Hamilton’s paper The Ricci flow on surfaces.
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5 Intuition when χ(M) > 0.

The situation when χ(M2) > 0 is a lot more complicated. If we look at what we have so far,
the maximum principle only gave us :

−Ce−2κt ≤ Kg(t) ≤ Ceκt

with κ > 0. These bounds are not enough to control the curvature as t→∞.
The hardest part is to get good upper curvature bounds. We will outline here a strategy

due to Andrews and Bryan to do this. In this chapter, we will always assume that our starting
surface (M2, g0) is a sphere S2 and satisfies κ = 1. In other words the area of (M2, g0) is
assumed to be 4π, which can always be achieved by rescaling.

5.1 The isoperimetric profile

The isoperimetric inequality in the plane says that for any simple closed curve γ in the plane,
the length L of γ and the area A it encloses are related by :

L2 ≥ 4πA

with equality if and only if γ is a circle.
To study these kind of problems on compact surfaces, it is convenient to introduce an object

called the isoperimetric profile :

Definition 5.1.1. The isoperimetric profile of a compact surface (M2, g) is the function hg :
[0, 1]→ R defined by :

hg(β) = inf
{
Lg(∂Ω)

∣∣ Ω ⊂M such that Ag(Ω) = βAg(M)
}

Remark 5.1.2. When the isoperimetric profile is known, we get an isoperimetric inequality for
free : for any domain Ω ⊂M2 :

Lg(∂Ω) ≥ hg

(
Ag(Ω)

Ag(M)

)
.

Exercise 5.1.3. Show that h(1− β) = h(β).

Exercise 5.1.4. Show that hλg =
√
λhg.

Let ḡ be the standard metric on the sphere of radius 1. Then a variation of the isoperimetric
inequality can be proved, and the optimal curves are parallels (curves of constant lattitude on
earth). With this we can prove :

hḡ(β) = 4π
√
β(1− β).
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Let us now consider a metric on the sphere whose area is one, and which is built by slicing
a round sphere of curvature K >> 1 along the equator and inserting in the middle a thin long
cylinder. One can then show that :

h(β) =


4π
√
β(1−Kβ) for β ∈ [0, 1/2K]

2π√
K

for t ∈ [1/2K, 1− 1/2K].

4π
√

(1− β)(1−K(1− β)) for t ∈ [1− 1/2K, 1]

The reason is the following :

• when 4πβ is smaller than the area of an hemisphere of curvature K, the regions of area
4πβ with minimal boundary length are inside the extremal hemispheres.

• after that, the optimal domains all have the same length : their bounday is always a
circle inside the cylindrical part.

5.2 Upper bounds on the curvature from isoperimetric
comparison.

The previous example demonstrates the fact that for β << 1, domains Ω ⊂ of area 4πβ which
will satisfy L(∂Ω) = h(β) will tend to concentrate around the points where the curvature is
the biggest. The following statement makes this intuition precise :

Proposition 5.2.1. Let (M2, g) be a surface of area 4π. Then :

hg(β) = 4π
√
β

(
1− supx∈M Kg(x)

2
β +O(β3/2)

)
as t goes to 0.

Remark 5.2.2. This tells us that at really small scales, the euclidean isoperimetric inequality
is satisfied up to an error term wich depends only on the maximum value of the curvature.

Corollary 5.2.3. Let (M, g) and (M̃, g̃) be two Riemannian surfaces whose isoperimetric
profile satisfy : h ≤ h̃. Then supM Kg ≥ supM̃ Kg̃.

5.3 Bounding the isoperimetric profile under the Ricci flow.

We will consider a special kind of metrics which we will call (by lack of better name) a sausage
metric.

Definition 5.3.1. A sausage metric is a metric g on S2 such that :

• g is rotationnally symmetric,

• g admits a symmetry with respect to an “equator”,

• The curvature Kg is striclty positive and decreases as one goes from the tip to the equator.
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Remark 5.3.2. More formally, the metric can be written as g = dr2 + f(r)2dθ2 for r ∈ (0, π)
and θ ∈ (0, 2π) (this ensures rotiational symmetry), and f satisfies :

• f(r) = r + o(r) and f(π − r) = r when r → 0, this ensure that this defines a metric on
S2.

• f(π − r) = f(r), this give the symmetry with respect to the equator r = π/2.

• r 7→ −f
′′

f
(r) is strictly positive and decreasing for r ∈ (0, π/2), this gives the required

positivity and monotonicity of the curvature.

The isoperimetric profile of sausage metrics can be finely studied and its evolution under
the Ricci flow can be controlled.

Andrews and Bryan prove the following result :

Theorem 5.3.3. Let (S2, g(t)) and (S2, ḡ(t)) be two normalized Ricci flows such that :

• ḡ(t) is a sausage metric for all t.

• hg(0)(β) ≥ hḡ(0)(β) for all β ∈ (0, 1).

Then for all t > 0, hg(t) ≥ hḡ(t).

5.4 Comparison with the Rosenau solution.

The Rosenau solution (S2, gR(t)) is one of the few explicit solutions to the Normalized Ricci
flow. It is a solution on the sphere which as the following properties :

• The area of gR(t) is constant equal to 4π.

• for all t, gR(t) is a sausage metric.

• when t→ +∞, KgR(t) uniformly converges to 1. The convergence is exponentialy fast.

• as t goes to −∞, gR looks more and more like a long thin cylinder with closed by two
rounds caps where most of the curvature is concentrated. In particular :

max
S2

KgR(t)
t→−∞−−−−→ +∞

and hgR(t) goes to 0 uniformly as t→ −∞.

With this at hand we can prove :

Theorem 5.4.1. Let (S2, g(t)) be a solution to normalized Ricci flow. Then there exist C > 0
and α > 0 such that :

Kg(t) − 1 ≤ Ce−αt.
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Proof. Let hg(0) be the isoperimetric profile of g(0). The properties of the Rosenau solution
described above imply that there is a time −t0 such that hgR(−t0) ≤ hg(0).

Thus for every t > 0, Theorem 5.3.3 implies :

hgR(t−t0) ≤ hg(t).

And now, Corrolary 5.2.3 implies :

Kg(t) ≤ KgR(t−t0).

Since KgR(t−t0) goes to 1 exponentialy fast, the theorem is proved.

From this we can show that : ∫
S2
|Kg(t) − 1|dvg(t)

t→∞−−−→ 0.

With some extra analytic work which is presented in the paper by Andrews an Bryan, one
can show that :

max
S2
|Kg(t) − 1| ≤ C ′e−αt/2.

The convergence to a constant curvature metric then follows as in chapter 4.
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